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Introduction. From its name we know already that “Leibniz’ Formula”

Dn(f · g) =
n∑

k=0

(
n
k

)
f (k)g(n−k) (1)

is as ancient as it is pretty. In the case n = 1 we recover the primitive “product
rule”

d
dx (f · g) = d

dxf · g + f · d
dxg (2)

and it is, of course, by iteration of (2) that one obtains (1). One might organize
the argument as follows: let (2) be notated

D(f · g) = f(
←
D +

→
D)g

Then

D2(f · g) = D
{
f
←
D · g + f · →Dg

}
= f
←
D(
←
D +

→
D)g + f(

←
D +

→
D)
→
Dg

= f(
←
D +

→
D)2g because

←
D and

→
D commute

...
Dn(f · g) = f (

←
D +

→
D)n︸ ︷︷ ︸ g (3)

=
n∑

k=0

(
n
k

)←
Dk→Dn−k

which reproduces (1).

Integration of (2) yields the “integation by parts” identity

f(x)g(x)
∣∣∣b
a

=
∫ b

a

f ′(x)g(x) dx+
∫ b

a

f(x)g′(x) dx
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which in its most frequently encountered formulation might be abbreviated
∫
fDg = boundary term −

∫
gDf (4)

Recently—in connection with an early draft of the material reported in §10 of
“Construction and Physical Application of the Fractional Calculus”—I for a
while imagined myself to stand in need of an identity of the form

∫
fDng = boundary term + factor ·

∫
gDnf (5)

Such an identity I did, in fact, manage to extract from Leibniz’ generalization of
(2)—only to discover that my imagined need was unreal. My primary purpose
in this note is to record a rather pretty result what would otherwise be consigned
to my wastebasket. I will take opportunity of the occasion also to inquire more
deeply into the fractional analog of Leibniz’ formula than was possible within
the compass of the seminar notes just cited. The tail will wag the dog.

1. Integration by parts in higher integral order. In order to expose most plainly
both the problem and my plan of attack, I look first to the case n = 2. By
Leibniz’ formula

fD2g = D2[fg]− 2Df ·Dg − gD2f

where it is the central term on the right that stands in the way of our achieving
an instance of (5). But

Df ·Dg = D[gDf ]− gD2f

so we have

fD2g = D2[fg]− 2
{
D[gDf ]− gD2f

}
− gD2f

= D2[fg]− 2D[gDf ] + gD2f

= D[fDg − gDf ] + gD2f

giving ∫ b

a

fD2g = [fDg − gDf ]ba +
∫ b

a

gD2f

which does indeed have the desired structure. Enlarging upon the preceeding
line of argument, we in the case n = 3 have

fD3g = D3[fg]−
( 3

1

)
D[Dg ·Df ]

−
{( 3

2

)
−

( 3
1

)}
D[D2f ]

−
{( 3

3

)
−

( 3
2

)
+

( 3
1

)}
gD3f
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giving ∫ b

a

fD3g = boundary term + factor ·
∫ b

a

gD3f

where

boundary term =
[
D2[fg]−

( 3
1

)
[Dg ·Df ]−

{( 3
2

)
−

( 3
1

)}
[D2f ]

]b

a

factor = −
{( 3

3

)
−

( 3
2

)
+

( 3
1

)}

To further consolidate my sense of pattern I look finally to the case n = 4:

fD4g = D4[fg]−
( 4

1

)
D[D2g ·Df ]

−
{( 4

2

)
−

( 4
1

)}
D[Dg ·D2f ]

−
{( 4

3

)
−

( 4
2

)
+

( 4
1

)}
D[g ·D3f ]

−
{( 4

4

)
−

( 4
3

)
+

( 4
2

)
−

( 4
1

)}
gD4f

= D4[fg]−
3∑

p=1

{ p−1∑
k=0

(−)k
( 4
p− k

)}
D[D3−pg ·Dpf ]

−
{ 3∑

k=0

(−)k
( 4

4− k
)}
gD4f

= D4[fg]−
3∑

p=1

{ p∑
q=1

(−)p−q
( 4
q

)}
D[D3−pg ·Dpf ]

−
{ 4∑

q=1

(−)4−q
( 4
q

)}
gD4f

But1
p∑

q=0

(−)p−q
(
n
q

)
=

(
n− 1
p

)
: p = 0, 1, 2, . . . , n− 1

so we can write
p∑

q=1

(−)p−q
( 4
q

)
=

p∑
q=0

(−)p−q
( 4
q

)
− (−)p =

( 4− 1
p

)
− (−)p : p = 1, 2, 3

4∑
q=1

(−)4−q
( 4
q

)
= −

3∑
q=0

(−)3−q
( 4
q

)
− (−)4 + 1 = 1−

( 4− 1
3

)
− (−)4

= (−)4−1

1 See Abramowitz & Stegun, p. 822.
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The clear implication is that we can in the general case write

fDng = D
[
Dn−1[fg]−

n−1∑
p=1

{(
n− 1
p

)
− (−)p

}
Dn−1−pg ·Dpf

]
+ (−)ngDnf

Thus do we achieve (5) with

boundary term =
[
Dn−1[fg]−

n−1∑
p=1

{(
n− 1
p

)
−(−)p

}
Dn−1−pg ·Dpf

]b

a

factor = (−)n


 (6)

Though I originally acquired interest in (5) in connection with a problem
rooted in the calculus of variations, I note in passing that it is evocative of the
train of thought that leads to the invention of the concept of “self-adjointness”
in operator theory. For example, in Sturm-Liouville theory2 one says of the
second-order differential operator

D ≡ A(x)D2 +B(x)D + C(x)

that it is self-adjoint if and only if there exist functions ωij(x) such that

fDg − gDf = d
dxΩ

Ω ≡
(
f
f ′

)T (
ω11 ω12

ω21 ω22

) (
g
g′

)

2. Remarks concerning the fractional extension of Leibniz’ formula. The formal
essentials of (3) can, if we wish, be notated

Dn =
n∑

k=0

[
n
k

]←
Dk→Dn−k (7)

where

[
n
k

]
≡ Γ (n+ 1)
Γ (k + 1)Γ (n+ 1− k) (8)

We can, in place of (7), write

Dn =
∞∑

k=0

[
n
k

]←
Dk→Dn−k (9)

2 See quantum mechanics (), Chapter II, p. 39 and references there
cited.
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since Γ (n − k + 1) becomes singular at k = n + 1, n + 2, n + 3, . . ., and its
reciprocal therefore vanishes. Equation (7) makes formal sense even when n is
not an integer (which I will emphasize by notational adjustment n �→ ν), but
in such cases the “Γ -switch” is deactivated; the finite series becomes an infinite
series. . . as it does also when n = −1,−2,−3, . . ., though in cases of the latter
sort the argument is a bit more intricate; it hinges not (as formerly) on the
absence of a singularity, but on the presence of competing singularities, since
on its face (8.1) produces ∞

∞ when n is a negative integer: one has3 —even at
the singular points of Γ (x)—

Γ (x)
Γ (x− k) = (−)k(1− x)k : k = 0, 1, 2, . . .

where
(z)0 ≡ 1
(z)k ≡ z(z + 1)(z + 2) · · · (x+ k − 1) : k = 1, 2, 3, . . .

serve to define the so-called “Pochhammer polynomials.”

From (9) it follows formally that

Dν(f · g) =
∞∑

k=0

[
ν
k

]
f
←
Dk→Dν−kg (10)

Such a “Leibniz’ formula for fractional derivatives” is, in fact, standard to the
fractional calculus literature,4 and possess a number of notable features:

• The formula retains its validity even for ν < 0;

• The formula treats f(x) and g(x) asymmetrically;

• In the terms with k > ν the function g(x) is subjected (not
to a differentiation process but) to an integration process.

3 See J. Spanier & K. Oldham, Atlas of Functions (), Chapter 17 and
43:5:11.

4 See K. Oldham & J. Spanier, The Fractional Calculus () §5.5 and
K. Miller & B. Ross, An Introduction to the Fractional Calculus and Fractional
Differential Equations () Chapter IV §4. The topic has been studied closely
in a series of papers by T. J. Osler: “Leibniz rule for fractional derivatives
and an application to infinite series,” SIAM J. Appl. Math. 18, 658 (1970);
“The fractional derivative of a composite function,” SIAM J. Math. Anal. 1,
288 (1970); “Fractional derivatives and Leibniz’ rule.” Amer. Math. Monthly
78, 645 (1971); “The integral analog of Leibniz’ rule,” Math. Comp. 26, 903
(1972); J. L. Lavoie, R. Tremblay & T. J. Osler, “Fractional derivatives and
special functions,” SIAM Rev. 18, 240 (1976). For reasons not clear to me, the
authors of the monographs cited above pay only glancing attention to the work
of Osler, though it is pretty work of remarkable power—as I shall demonstrate.



6 Fractional Leibniz’ formulæ

To gain a sharper feeling for the implications of the preceding remarks, I look
to concrete examples, from which I attempt to draw general lessons.

Useful information can, in favorable cases, be gained by the simple
expedient of setting f(x) = eax, for then (10) reads

Dν
(
eaxg(x)

)
= eax ·

∞∑
k=0

ak
[
ν
k

]
Dν−kg(x) (11)

Suppose, for example, we set ν = 1
2 and take g(x) to be the

unit function : u(x) = 1 (all x)

By definition (at least within the standard Riemann-Liouville formulation of
the fractional calculus)

D
1
2 f(x) ≡ D ·D− 1

2 f(x) ≡ D ·
{

1
Γ ( 1

2 )

∫ x

0

1√
x− y f(y) dy

}

so (according to Mathematica)

D
1
2 eax = D ·

{
1

Γ ( 1
2 )

∫ x

0

1√
x− y e

ay dy

}
: x > 0 and 
(a) > 0

= D ·
{
eaxerf(

√
ax )√

a

}

= 1√
πx

+
√
aeaxerf(

√
ax )

= eax
{

1√
πx
e−ax +

√
a erf(

√
ax )

}
= eax · 1√

πx

{
1 + a · x− a2 · 1

6x
2 + a3 · 1

30x
3

− a4 · 1
168x

4 + a5 · 1
1080x

5 − a6 · 1
7920x

6 + · · ·
}

while the right side of (11) supplies

= eax ·
∞∑

k=0

ak
[

1
2

k

]
D

1
2−ku(x)

= eax ·
{

1D
1
2u+ a · 1

2D
− 1

2u− a2 · 1
8D

− 3
2u+ a3 · 1

16D
− 5

2u

− a4 · 5
128D

− 7
2u+ a5 · 7

256D
− 9

2u− a6 · 21
1024D

− 11
2 u+ · · ·

}
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Consistency entails

D+ 1
2u = 1√

πx

D− 1
2u = 1√

πx
2x = 1√

πx
(2x)

1

D− 3
2u = 1√

πx
4
3x

2 = 1√
πx

(2x)2

1·3

D− 5
2u = 1√

πx
8
15x

3 = 1√
πx

(2x)3

1·3·5

D− 7
2u = 1√

πx
16
105x

4 = 1√
πx

(2x)4

1·3·5·7

D− 9
2u = 1√

πx
32
945x

5 = 1√
πx

(2x)5

1·3·5·7·9

D− 11
2 u = 1√

πx
64

10395x
6 = 1√

πx
(2x)6

1·3·5·7·9·11
...

It is gratifying to observe that the preceding line of argument leads in the
general case to a result

D−(k− 1
2 )x0 = 1√

πx
(k−1)!2k−1(2x)k

(2k−1)!

= 1
Γ (k+ 1

2 )
xk− 1

2

that can be read as a special case of Lacroix’ construction5

D−νxp = Γ (1+p)

Γ (1+p+ν)
xp+ν (12.1)

which—though introduced in  by S. F. Lacroix on quite other (casually
informal) grounds—is itself an immediate implication of the definition put
forward by Liouville & Riemann:

D−νf(x) =
1
Γ (ν)

∫ x

0

(x− y)ν−1f(y) dy

↓

D−ν xp =
1
Γ (ν)

∫ x

0

(x− y)ν−1yp dy

= Γ (1+p)

Γ (1+p+ν)
xp+ν : x > 0, 
(p) > −1, 
(ν) > 0

If we retain g(x) = u(x) ≡ 1 but take f(x) = xp and (for expository
convenience) assume 0 < ν < 1 then Leibniz’ formula (10) gives

Dν(xp · 1) =
p∑

k=0

[
ν
k

] p!
(p− k)!x

p−k ·Dν−ku

=
[
ν
0

]
xp ·Dνu+

p∑
k=1

[
ν
k

] p!
(p− k)!x

p−k ·D−(k−ν)u

5 See (8.2) in “Construction. . . of the fractional calculus” ().
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But

Dνu ≡ D ·D−(1−ν)u

= D · 1
Γ (2− ν)x

1−ν

=
1

Γ (1− ν)x
−ν

D−(k−ν)u =
1

Γ (1 + k − ν)x
k−ν

so we have

Dνxp =
{[
ν
0

] 1
Γ (1− ν) +

p∑
k=1

[
ν
k

] p!
(p− k)!

1
Γ (1 + k − ν)

}
xp−ν

=
p∑

k=0

{
Γ (1 + ν)

Γ (1 + k)Γ (1 + ν − k)
Γ (1 + p)

Γ (1 + p− k)
1

Γ (1 + k − ν)

}
xp−ν

= Γ (1+p)

Γ (1+p−ν)
xp−ν according to Mathematica (12.2)

which we recognize to be precisely Lecroix’ definition of the fractional derivative
Dνxp (0 < ν < 1)—recovered here as a corollary jointly of Lecroix’ definition
of the fractional integral D−νxp and of the fractional generalization (10) of
Leibniz’ formula. If, on the other hand, we agree to accept Lecoix’ definitions
as given, then the preceding argument can be read (as I intended it) as a
demonstration that (10) is consistent with the facts of the matter, and that the
integrative aspects of Leibniz’ formula—far from being a strange and unwelcome
intrusion—are essential to its success.

The surprising fact is that while the statement

Dinteger(f · u) = Dinteger(u · f) is trivially & uninformatively true

its fractional analog/generalization

Dfraction(f · u) = Dfraction(u · f) is non-trivially & informatively true (13)

—at least so far as concerns functions of the type f(x) =
∑
fpx

p—and the same
can be said in the more general case f ·g, as we have in fact had occasion already
to see; the left and right sides of the latter of the preceding equalities lead to
distinct computational problems, distinct organizations of the same functional
material. And for none of this is there precedent in the ordinary calculus, which
is (beyond the presence of all the Γ -functions) why exercise of the type that
recently engaged us feels so unfamiliarly “strange.”
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3. Construction & applications of a “generalized fractional Leibniz formula”.
At (13) I identify one mechanism by which the fractional Leibniz formula
invites one to play on-the-one-hand-this-but-on-the-other-hand-that. There
exists also a second mechanism, which I undertake now to describe. By way of
preparation. . .

Let A and B be real numbers. Trivially,

(A+B)3, A3(1 +A−1B)3, (AB−1 + 1)3B3

and more generally

Ap(A1− 1
3 pB− 1

3 q +A− 1
3 pB1− 1

3 q)3Bq

all yield A3+3A2B+3AB2+B3 when multiplied out. A similar remark pertains
(for arbitrary p and q) to

(A+B)N = Ap(A1− 1
N pB− 1

N q +A− 1
N pB1− 1

N q)NBq

when N = 0, 1, 2, . . .. Consider, however, the representative non-integral case
N = −1: formally we have

(A+B)−1 =



A−1

[
1− B

A +
(

B
A

)2 − · · ·
]

B−1
[
1− A

B +
(

A
B

)2 − · · ·
]

which provide distinct descriptions of the same expression. But the first series is
convergent if and only if (B/A)2 < 1, and the second if and only if (B/A)2 > 1;
the series are in this sense complementary, and we do not imagine them to be
simultaneously valid.

In (for example) quantum mechanics, where the general non-commutativity
of operators A and B must be respected, we proceed rather differently to a
somewhat different conclusion: from the triviality

1
A + B

=
1
A

(A + B− B)
1

A + B
=

1
A
− 1

A
B

1
A + B

we by iteration obtain6

(A + B)−1 =




A−1
[
I− BA−1 + (BA−1)2 − · · ·

]

B−1
[
I− AB−1 + (AB−1)2 − · · ·

] (14)

It is, in such a context, meaningless to impose convergence conditions of the
form “(B/A)2 < 1.” Such conditions attach instead to the number-valued inner
products (ϕ|B/A|ψ) that emerge in association with specific applications of (14);
we are prepared to ascribe simultaneous formal validity to both variants of (14).

6 See, for example, A. Massiah, Quantum Mechanics (), p. 715.
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Returning in this light to (3), we find it natural to write

Dν(f · g) = f (
←
D +

→
D)ν︸ ︷︷ ︸ g

=
←
Dν(1 +

←
D−1→D)ν =

∞∑
j=0

[
ν
j

]←
Dν−j→Dj (15.11)

=
∞∑
−∞

[
ν
j

]←
Dν−j→Dj (15.12)

= (
←
D
→
D−1 + 1)ν→Dν =

∞∑
k=0

[
ν
k

]←
Dk→Dν−k (15.21)

=
∞∑
−∞

[
ν
k

]←
Dk→Dν−k (15.22)

where we are dealing now with operators
→
D and

←
D that (by definition, as was

noted already in connection with (3)) do commute, but which (because they
are operators, not numbers) displace the locus of the convergence problem:
convergence becomes contingent upon the structure of the operands, f(x) and
g(x). Working from (15.11) with the aid of Lecroix’ construction (12) we have

Dν(xp · xq) =
∞∑

j=0

[
ν
j

]
xp←Dν−j→Djxq

=
{ ∞∑

j=0

Γ (1+ν)Γ (1+p)Γ (1+q)

Γ (1+j)Γ (1+ν−j)Γ (1+p−ν+j)Γ (1+q−j)

}
xp+q−ν

Mathematica supplies

{
etc.

}
= Γ (1+p+q)

Γ (1+p+q−ν)

[
− Γ (−ν)Γ (1+ν) sin πν

π

][
− Γ (−q)Γ (1+q) sin πq

π

]

but appears to be unaware of the “reflection formula” Γ (−x)Γ (1+x) sin πx

π
+1 = 0

(see Spanier & Oldham’s Atlas of Functions 43:5:1), by virtue of which we
achieve precise agreement with Lacroix’ statement

Dνxp+q = Γ (1+p+q)

Γ (1+p+q−ν)
xp+q−ν

Had we argued from (15.21) we would have achieved an identical result.

In an effort to proceed directly from (15.11) to (15.21) we set k = ν − j
(therefore j = ν − k) and use

[
ν
j

]
=

[
ν

ν − k
]

=
[
ν
k

]
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to obtain ∞∑
j=0

[
ν
j

]←
Dν−j→Dj =

∑
{k}

[
ν
k

]←
Dk→Dν−k

where {k} ≡ {ν, ν − 1, ν − 2, . . .} ↪→ {. . . , ν + 2, ν + 1, ν, ν − 1, ν − 2, . . .}. In
(15.21) the index k ranges, however, on {0, 1, 2, . . .} ↪→ {. . . ,−2,−1, 0,+1,+2},
where ↪→ is intended to be read “which can, in the present context, be freely
extended to the set.” We are brought thus to the fairly remarkable conclusion
that

xp ·
∑
{k}

[
ν
k

]←
Dk→Dν−k · xq = Dνxp+q = Γ (1+p+q)

Γ (1+p+q−ν)
xp+q−ν

holds independently of whether we take k to range on

{. . . ,−2 ,−1 , 0 ,+1 ,+2 , . . .}

or on
{. . . ,−2 + ν,−1 + ν, 0 + ν,+1 + ν,+2 + ν, . . .}

This would become instantly intelligible if we could establish that k can in fact
be taken to range on

{. . . ,−2 + λ,−1 + λ, 0 + λ,+1 + λ,+2 + λ, . . .}

where the value of λ is arbitrary . We ask: Is it in fact the case that

xp ·
∑
{j}

[
ν

j + λ

]←
Dj+λ→Dν−j−λ · xq = Γ (1+p+q)

Γ (1+p+q−ν)
xp+q−ν : all λ (16.1)

if j ranges on {. . . ,−2,−1, 0,+1,+2, . . .}? Can we, in other words, show that
∑
{j}

{
1

Γ (1+j+λ)Γ (1+ν−j−λ)Γ (1+p−j−λ)Γ (1+q−ν+j+λ)

}
(16.2)

= 1
Γ (1+ν)Γ (1+p)Γ (1+q)

Γ (1+p+q)

Γ (1+p+q−ν)

For the convenience of Mathematica we write

∑
{j}

{
etc.

}
=

∞∑
0

{
etc.

}
− 1

Γ (1+λ)Γ (1+ν−λ)Γ (1+p−λ)Γ (1+q−ν+λ)
+

0∑
−∞

{
etc.

}

and are informed that
∞∑
0

{
etc.

}
= Γ (−p+λ)Γ (λ−ν) sin[π(1+p−λ)] sin[π(1−λ+ν)]

π2Γ (1+λ)Γ (1+q+λ−ν)

× 3F2(1,−p+ λ, λ− ν; 1 + λ, 1 + q + λ− ν; 1)
0∑

−∞

{
etc.

}
= Γ (−λ)Γ (−q−λ+ν) sin[π(1+λ)] sin[π(1+q+λ−ν)]

π2Γ (1+p−λ)Γ (1−λ+ν)

× 3F2(1,−λ,−q − λ+ ν; 1 + p− λ, 1− λ+ ν; 1)
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where7

3F2(A,B,C; a, b;x) ≡
∞∑

n=0

(A)n(B)n(C)n

(a)n(b)n

xn

n!

is a “generalized hypergeometric function.” The expressions (A)n, (B)n,. . .
denote Pochhammer polynomials, of which I here repeat the definition:

(P )0 ≡ 1 and (P )n ≡ P (P + 1)(P + 2) · · · (P + n− 1)

Drawing again upon the reflection formula

Γ (−x) sin[π(1 + x)]
π

=
1

Γ (1 + x)

we obtain

∞∑
0

{
etc.

}
= 3F2(1,−p+λ,λ−ν;1+λ,1+q+λ−ν;1)

Γ (1+λ)Γ (1+ν−λ)Γ (1+p−λ)Γ (1+q−ν+λ)
≡ S+(p, q, ν;λ)

1

Γ (1+λ)Γ (1+ν−λ)Γ (1+p−λ)Γ (1+q−ν+λ)
≡ S 0(p, q, ν;λ)

0∑
−∞

{
etc.

}
= 3F2(1,−λ,−q−λ+ν;1+p−λ,1−λ+ν;1)

Γ (1+λ)Γ (1+ν−λ)Γ (1+p−λ)Γ (1+q−ν+λ)
≡ S−(p, q, ν;λ)




(17)

Our problem, therefore, is to show that (for all λ)

S+(p, q, ν;λ)− S 0(p, q, ν;λ) + S−(p, q, ν;λ)

= 1
Γ (1+ν)Γ (1+p)Γ (1+q)

Γ (1+p+q)

Γ (1+p+q−ν)

(18)

As a check on the accuracy of my work, I set λ = 0 and obtain

S+(p, q, ν; 0) = desired expression

S 0(p, q, ν; 0) = S−(p, q, ν; 0) = 1
Γ (1)Γ (1+ν)Γ (1+p)Γ (1+q−ν)

In this case, the leading term on the left side of (17) does all the work, while
the remaining terms conspire to get out of the way. When, on the other hand,
I set λ = ν the situation is reversed, since (transparently from (16.2)) only
the leading term contributes to the S+ sum; one obtains—whether one works
directly from the sums or from the valuations assigned to them by (17)—

S+(p, q, ν; ν) = S 0(p, q, ν; ν) = 1
Γ (1+ν)Γ (1)Γ (1+p−ν)Γ (1+q)

S−(p, q, ν; ν) = desired expression

7 See A. Erdélyi et al , Higher Transcendental Functions §5.1. Erdélyi’s
Chapters IV, V and VI provide a usefully detailed account of the theory of
hypergeometric functions and their cognates, and have served as my principal
source.
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These results, while they provide a neat recapitulation of the experience that
served initially to motivated me to ask questions (16), serve not at all to clarify
what the answer to those questions (variants of the same question) might be. I
pose those questions now in the form of a

conjecture: S(p, q, ν;λ) = S(p, q, ν; 0) for all λ (19.1)

= 1
Γ (1+ν)Γ (1+p)Γ (1+q)

Γ (1+p+q)

Γ (1+p+q−ν)︸ ︷︷ ︸
confirmed easily by Mathematica

Here
S(p, q, ν;λ) ≡ S+(p, q, ν;λ)− S 0(p, q, ν;λ) + S−(p, q, ν;λ)

=
N(p, q, ν;λ)
D(p, q, ν;λ)

with

N(p, q, ν;λ) ≡ −1 + 3F2(1,−p+ λ, λ− ν; 1 + λ, 1 + q + λ− ν; 1)
+ 3F2(1,−λ,−q − λ+ ν; 1 + p− λ, 1− λ+ ν; 1)

D(p, q, ν;λ) ≡ Γ (1 + λ)Γ (1 + ν − λ)Γ (1 + p− λ)Γ (1 + q − ν + λ)

The functionD(p, q, ν;λ) has poles whenever one or another of the Γ -arguments
hits one or another of the values {0,−1,−2, . . .}. The validity of the conjecture
requires that those be precisely counterbalanced by poles of N(p, q, ν;λ), and
this appears to impose a burden upon the numerical resources of Mathematica.
It becomes in this light attractive to work with the following reformulation of
our conjecture

S(p, q, ν; 0)
N(p, q, ν;λ)

− 1
D(p, q, ν;λ)

= 0 (19.2)

which Mathematica does in fact appear to find much more digestible. Finally,
we might write

N(p, q, ν;λ) = S(p, q, ν; 0)D(p, q, ν;λ)
↓

3F2(1,−p+λ,λ−ν;1+λ,1+q+λ−ν;1) + 3F2(1,−λ,−q−λ+ν;1+p−λ,1−λ+ν;1)

= 1 + Γ (1+p+q)Γ (1+λ)Γ (1+ν−λ)Γ (1+p−λ)Γ (1+q−ν+λ)

Γ (1+p+q−ν)Γ (1+ν)Γ (1+p)Γ (1+q)

(19.3)

which is of analytical (rather than numeric) interest as a “gamma representation
theorem” for the sum of hypergeometrics that stands on the left.

I am satisfied that the conjectured equations (19) are in fact true equations,
but will postpone discussion of the evidence until after I have had opportunity
to establish contact with the literature, and to explore certain. . .
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4. Formal ramifications of the conjecture. Our conjecture is rooted in the formal
expectation—to which it relates as a sufficient but not necessary condition—
that Dν(f · g) = Dν(f · g) should be not only true but manifestly true; it
accomplishes that objective by permitting us (see again (16.1)) to write

Dν(f · g) = f ·
∑
{j}

[
ν

j + λ

]←
Dj+λ→Dν−j−λ · g (20)

where {j} ≡ {. . . ,−2,−1, 0,+1,+2, . . .} and λ is arbitrary.

Equation (20)—which gives back the classic result (10) at λ = 0—is the
subject of the first of the Osler papers () cited in footnote 4, but was old
already then; it had (as was brought to Osler’s attention by a referee) been
written down already by Y. Watanabe in . Osler’s basic motivation (and
presumably also Watanabe’s) was the same as my own, but his methods are
usefully distinct from (and in many respects much more sophisticated than)
mine.8

Osler has emphasized that (20) can be pressed into service as a kind of
“identity generating machine,” and has provided many examples of its use in
that capacity; it will serve my illustrative purposes to describe just a few. By
way of preparation, we remind ourselves that

Dνf(x) = D ·Dν−1f(x) = D ·D−(1−ν)f(x)

= D · 1
Γ (1− ν)

∫ x

0

(x− y)(1−ν)−1f(y) dy

=
1

Γ (−ν)

∫ x

0

(x− y)−νf(y) dy (21)

= fractional integral of negative order (at least formally)

We will regard (20) as a statement about expressions of type (21), and will
entrust to Mathematica the responsibility for doing the integrals.

Set f(x) =
xb−1

(1− x)a
, g(x) = unit function, ν = b− c, λ = 0

The left side of (20) then gives[
xc−1Γ (b)
Γ (c)

]
2F1(a, b; c ;x)

and it becomes clear that it was to achieve such a pretty result that Osler
defined f(x) as he did; his eye had evidently come to rest on entry 13.1.9 in

8 Osler is a mathematician, and pays a mathematician’s careful attention to
convergence criteria and other such niceties; as a physicist I am content—and
in order to get from here to there in finite time generally prefer—to proceed
much more formally, trusting to the physics itself to tell me when I have lapsed
into material error.
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the Erdélyi table of fractional integrals,9 where he tinkered with the parameters
so as to make the hypergeometric factor as simple as possible. Turning now to
the right side of (20), we have

∑
{j}

{
x−1+b−jΓ (b)
Γ (b− j) 2F1(a, b; b− j;x)

}
Γ (1 + b− c)

Γ (1 + j)Γ (1 + b− c− j)

·
{

x−b+c+j

(−b+ c+ j)Γ (−b+ c+ j)

}

= xc−1Γ (b)Γ (1 + b− c)
∑
{j}
C(b, c; j) 2F1(a, b; b− j;x)

where

C(b, c; j) ≡ 1
Γ (1 + b− c− j)Γ (−b+ c+ j)︸ ︷︷ ︸

· 1
Γ (b− j)Γ (1 + j)(−b+ c+ j)

=
sinπ(−b+ c+ j)

π
= −(−)j sinπ(b− c)

π

Assembling and simplifying the results now in hand, we obtain

2F1(a, b; c;x) = Γ (c)Γ (1+b−c) sin π(b−c)
π

∑
{j}

(−)j 1
Γ (b−j)j!(b−c−j) 2F1(a, b; b− j;x)

We have here reproduced the first of the identities on Osler’s list of twenty-one,
by an argument which serves well enough to illustrate the “identity generation”
potential of (20), and to make clear how Osler’s notational conventions relate to
my own. The example draws upon the fractional Leibniz formula in its classic
form (λ = 0). I turn now to an example which draws explicitly upon the feature
of (20) which represents a generalization of that classic formula:

Set f(x) = xc−b−1, g(x) = xd−a−1, ν = c− a− 1, λ = c− 1

The left side of (20) now gives

x−1−b+dΓ (c+ d− a− b− 1)
Γ (d− b)

while the right side becomes

∑
{j}

{
x−b−jΓ (c− b)
Γ (1− b− j)

}
Γ (c− a)

Γ (c+ j)Γ (1− a− j)

{
x−1+d+jΓ (d− a)

Γ (d+ j)

}

= x−1−b+dΓ (c− b)Γ (c− a)Γ (d− a)

·
∑
{j}

1
Γ (1− a− j)Γ (1− b− j)Γ (c+ j)Γ (d+ j)

9 Tables of Integral Transforms, Volume II, p.186.
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But by the reflection formula

1
Γ (1− a− j)Γ (1− b− j) =

sinπa sinπbΓ (a+ j)Γ (b+ j)
π2

so from the results now in hand it follows that

Γ (c+d−a−b−1)

Γ (c−a)Γ (c−b)Γ (d−a)Γ (d−b)
= sin πa sin πb

π2

∑
{j}

Γ (a+j)Γ (b+j)

Γ (c+j)Γ (d+j)
(22)

We have here reproduced the tenth identity on Osler’s list, which he calls
“Dougall’s formula,” with reference to §1.4 of Erdélyi’s Higher Transcendental
Functions, Volume I. It is interesting to note that (20) gives rise to a line of
argument which bears almost no resemblance to that outlined by Erdélyi.10

And that Mathematica, when asked to sum the series, returns quite a different
result:

∑
{j}

Γ (a+j)Γ (b+j)

Γ (c+j)Γ (d+j)
= Γ (a)Γ (b)

Γ (c)Γ (d) 3F2(1,a,b;c,d;1)

+ Γ (a−1)Γ (b−1)

Γ (c−1)Γ (d−1) 3F2(1,2−c,2−d;2−a,2−b;1)

This, however, is a fairly immediate consequence of the definition of the
hypergeometric function, and is therefore less richly informative than Dougall’s
formula.

5. Status of the conjecture. Looking again to the boxed assignments that led us
to Dougall’s formula (22), we set

c− b − 1 = p
d− a− 1 = q
c− a− 1 = ν

c− 1 = λ

giving
a = λ− ν
b = λ− p
c = 1 + λ
d = 1 + q + λ− ν

10 J. Dougall is cited several times by E. T. Whittaker in his Modern Analysis;
he appears to have been a Scottish analyst, who published frequently on diverse
topics in Proc. Edinburgh Math. Soc. during the first decades of the present
century. His name, however, does not appear in any of the standard biographical
sourcebooks.
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in which notation (22) reads
Γ (1+p+q)

Γ (1+ν)Γ (1+p)Γ (1+q)Γ (1+p+q−ν)

= sin π(λ−ν) sin π(λ−p)
π2

∑
{j}

Γ (λ−ν+j)Γ (λ−p+j)

Γ (1+λ+j)Γ (1+q+λ−ν+j)

=
∑
{j}

1
Γ (1−λ+ν−j)Γ (1−λ+p−j)Γ (1+λ+j)Γ (1+q+λ−ν+j)

where to obtain the last equality we have appealed once again to the reflection
formula and made use of sinπx = (−)j sinπ(x + j). The result just achieved
is precisely (16.2); our conjectured relation (19) is at this point recognized to
be merely a notational variant of Dougall’s formula. And Dougall’s formula
is—subject to the reported conditions


(a+ b− c− d) < 1 : a and b not integers
which in our notation read


(p+ q) > −1 : λ− ν and λ− p not integers
—an established fact. So, therefore, is our conjecture. And so, finally, is (20),
the superficially diverse consequences of which (see again Osler’s list) are seen
now all to be disguised variants of Dougall’s formula.

Osler, in §4 of his paper, establishes (20) by an argument which makes
heavy use of contour integral methods (and which, though Dougall’s formula
is not mentioned in this precise connection, must amount to a proof of that
formula); his argument will win no beauty contests, but works.

I digress now to describe the upshot some recent work which, though
rendered obsolete by the result just achieved, does seem to me to retain interest
insofar as it suggests that “Dougall’s formula is exquisitely delicate; though
true, it is only barely true.” I was led to that conclusion by the computational
experience which I now summarize: To gain preliminary insight into the
plausibility of (19.1) I proposed to assign “typical” values {p̃, q̃, ν̃} to the
parameters {p, q, ν} and then—with the assistance of Mathematica—to plot
S(p, q, ν;λ). Since S(p, q, ν;λ) is defined at (17) in terms of hypergeometric
functions of unit argument, and since moreover we know that 3F2(A,B,C; a, b; z)
is convergent everywhere (meaning “at all meaningful points”) in parameter-
space only if |z| < 1, I elected (in order to be on the safe side) to make
replacements of the form

3F2(A,B,C; a, b;x) ←−� 3F2(A,B,C; a, b; 1)
in (17) and to approach x = 1 as a limit. The results achieved when I set
{p̃, q̃, ν̃} = {1, 1, 1

2} appear to be typical; Mathematica reported

S(1, 1, 1
2 ;λ;x = 999999

1000000 ) =
sum of 2F1 functions × polynomials in λ

product of Γ functions

S(1, 1, 1
2 ;λ;x = 1000000

1000000 ) =
sum of polygamma functions × polynomials in λ

product of Γ functions

S(1, 1, 1
2 ;λ;x = 1000001

1000000 ) =
former sum of 2F1 functions × polynomials in λ

product of Γ functions
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and constructed the following figures:

Figure 1: Plots of the functions S(p̃, q̃, ν̃;λ;x) described in the
text, with x = 999999

1000000 (top), x = 1 (center), x = 1000001
1000000 (bottom).

The “chaos” evident at x = 1 appears to be scale-independent, in
the sense that figures with 0 ≤ λ ≤ λmax (λmax = 0.001, 1, 100) are
qualitatively similar. The conjectured constant value is

S(p̃, q̃, ν̃; 0; 1) = 16
3π = 1.69765
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The upward/downward drift at x = 1±10−6 (exaggerated in the figure) is slow
enough to suggest that S(p̃, q̃, ν̃;λ;x → 1) is destined to adhere constantly to
the correct value, and provides no anticipatory hint of the radical qualitative
adjustment seen at x = 1. The question therefore arose: Is the seeming chaos
real (bad news for my conjecture!), or is it an artifact of the computational
process? When I asked Mathematica to use 100-point precision in computing
the values assumed by

f(λ) ≡ S(p̃, q̃, ν̃;λ; 1)− S(p̃, q̃, ν̃; 0; 1) at λ = n
10 : n = 0, 1, 2, . . . , 12

it complained repeatedly of “MaxExtraPrecision reached while evaluating. . . ”
but produced finally this data:

0

+0.× 10−223

+0.× 10−223

+0.× 10−223

+0.× 10−223

0

−0.× 10−223

+0.× 10−223

−0.× 10−223

−0.× 10−223

0

−0.× 10−223

−0.× 10−223

While Mathematica found the variant (19.2) of our conjecture relatively more
digestible, it did show clear symptoms of a similar gastric distress. I have, at
present, nothing to say concerning either the origin or the ultimate significance
of the instability brought thus to light.

6. Continuous analogs of the fractional Leibniz formula. Let (20) be notated

Dν(f · g) = f · ↔D(ν;λ) · g (23)

Since the λ-parameterized operators
↔
D(ν;λ) are (for ν given/fixed) functionally

identical, they can be used in arbitrarily weighted linear combination:

Dν(f · g) = f ·
∑

k

wk

↔
D(ν;λk) · g provided

∑
k

wk = 1

which in the continuous limit reads

Dν(f · g) = f ·
∫
w(λ)

↔
D(ν;λ) dλ · g provided

∫
w(λ) dλ = 1
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Reverting now to a more explicit notation, we have∫
w(λ)

↔
D(ν;λ) dλ =

∫
w(λ)

∑
{j}

[
ν

λ+ j

]←
Dλ+j→Dν−(λ+j) dλ

=
∫ ∫

w(λ)
∑
{j}
δ(µ− j)

[
ν

λ+ µ

]←
Dλ+µ→Dν−(λ+µ) dλdµ

The change of variables {λ, µ} �→ {λ, α ≡ λ+µ} has unit Jacobian, and permits
us to write

=
∫ { ∫

w(λ)
∑
{j}
δ(α− λ− j) dλ

}
︸ ︷︷ ︸

[
ν
α

]←
Dα→Dν−α dα

=
∑
{n}
w(α+ n)

≡ Ω(α)

where Ω(α) has unit period Ω(α + 1) = Ω(α) and is otherwise subject only to
the constraint ∫ 1

0

Ω(α)dα = 1

We are led thus to a population of “continuous analogs of the fractional Leibniz
formula”

Dν(f · g) = f ·
∫ +∞

−∞
Ω(α)

[
ν
α

]←
Dα→Dν−α dα · g (24)

Ω(α) any such periodic function

Osler11 has studied (24) in the special case Ω(α) = unit function.

The periodic function Ω(α) is the fruit of a train of thought which owes
much to the spirit of the line of argument which led Poisson to the beautiful
“Poisson summation formula.”12 It will be noted also that the intrusion of
continuous methods into discrete problems is a phenomenon encountered a great
variety of settings; for example, in the formal theory of (non-commutative)
operator algebras one encounters13 statements of the type

∂
∂te

A(t) =
∫ 1

0

e(1−u)A(t) ∂A
∂t e

uA(t) du

11 “The integral analog of the Leibniz rule,” Math. Comp. 26, 903 (1972).
12 See pp. 75–77 of R. Courant & D. Hilbert, Methods of Mathematical Physics

() or P. Morse & H. Feshbach, Methods of Theoretical Physics (),
pp. 466–467 & 483.

13 See classical mechanics (), pp. 287–287; R. Wilcox, “Exponential
operators and parameter differentiation in quantum physics,” J. Math. Physics
8, 962 (1967).
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and

[A , eB ] =
∫ 1

0

e(1−u)B(t)[A ,B ]euB(t) du

where the effects of non-commutivity are, in effect, “smeared.”

Equation (24) can be written

Dν(f · g)
Γ (1 + ν)

=
∫ +∞

−∞

Dαf

Γ (1 + α)
· Dν−αg

Γ (1 + ν − α)
Ω(α) dα (25)

where (see again (21) and make use once again of the reflection theorem)

Dαf

Γ (1 + α)
=

∫ x

0

(x− y)−αf(y)
Γ (1 + α)Γ (−α)

dy

= − sinπα
π

∫ x

0

(x− y)−αf(y) dy

When viewed in this light (with eyes sufficiently de-focused), the architecture
of (25) is seen to embody the general structure

∫
FG =

∫ {∫
F

}{∫
G

}

and therefore to be reminiscent of a statement (Parseval’s formula)

∫ +∞

−∞
f(x)g̃(x)dx =

∫ +∞

−∞

{
1√
2π

∫
f(x)eikxdx

}{
1√
2π

∫
g̃(y)e−iky dy

}
dk

fundamental to the theory of the Fourier transform.14 Osler has pursued in
elaborate detail the fertile implications of this observation, and has produced
many examples demonstrative of the fact that, just as (20) is a powerful
“identity generating machine,” so also—especially, but not exclusively, as they
pertain to Fourier transform theory—are its continuous analogs (24). But I
have no immediate need of such information, and my own (much more limited)
objectives have been achieved. . . so I here abandon this pretty subject.

14 See, for example, P. Morse & H. Feshbach, pp. 456–459.


